Dispersed dynamics of solvation in G-quadruplex DNA: comparison of dynamic Stokes shifts of probes in parallel and antiparallel quadruplex structures.

نویسندگان

  • Moirangthem Kiran Singh
  • Him Shweta
  • Sobhan Sen
چکیده

G-quadruplex DNA (GqDNA) structures play an important role in many specific cellular functions and are promising anti-tumor targets for small molecules (ligands). Here, we measured the dynamic Stokes shift of a ligand (Hoechst) bound to parallel c-Myc (mPu22) GqDNA over five decades of time from 100 fs to 10 ns, and compared it with the previously reported dynamics of DAPI bound to antiparallel human telomeric (hTelo22) GqDNA (Pal et al 2015 J. Phys. Chem. Lett. 6 1754). Stokes shift data from fluorescence up-conversion and time-correlated single photon counting experiments was combined to cover the broad dynamic range. The results show that the solvation dynamics of Hoechst in parallel mPu22 GqDNA follow a power law relaxation, added to fast 2 ps exponential relaxation, from 100 fs to 10 ns, with only a subtle difference of power law exponents in the two ligand-GqDNA systems (0.06 in Hoechst-mPu22 compared to 0.16 in DAPI-hTelo22). We measured steady-state fluorescence spectra and time-resolved anisotropy decays which confirm the tight binding of Hoechst to parallel mPu22 with a binding constant of ~1  ×  105 M-1. The molecular docking of Hoechst in parallel GqDNA followed by a 50 ns molecular dynamics (MD) simulation on a Hoechst-GqDNA complex reveals that Hoechst binds to one of the outer G-tetrads by end-stacking near G13 and G4, which is different from the binding site of DAPI inside a groove of antiparallel hTelo22 GqDNA. Reconciling previous experimental and simulation results, we assign the 2 ps component to the hydration dynamics of only weakly perturbed water near mPu22 and the power law relaxation to the coupled motion of water and DNA (i.e. DNA backbone, unpaired bases and loops connecting G-tetrads) which come near the Hoechst inside parallel GqDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter

Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...

متن کامل

Evidence for the binding mode of porphyrins to G-quadruplex DNAw

Interactions of porphyrin derivatives 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23Hporphyrin (TMPyP4) and 5,10,15,20-tetrakis(N-propylpyridinium-4-yl)-21H,23H-porphyrin (TPrPyP4) with human telomeric AG3(T2AG3)3 G-quadruplex DNAs in 150 mM K -containing buffer in the presence or absence of 40% molecular crowding agent poly(ethylene glycol) (PEG 200) were studied by absorption titration f...

متن کامل

Intramolecular quadruplex conformation of human telomeric DNA assessed with 125I-radioprobing.

A repeated non-coding DNA sequence d(TTAGGG)n is present in the telomeric ends of all human chromosomes. These repeats can adopt multiple inter and intramolecular non-B-DNA conformations that may play an important role in biological processes. Two intramolecular structures of the telomeric oligonucleotide dAGGG(TTAGGG)3, antiparallel and parallel, have been solved by NMR and X-ray crystallograp...

متن کامل

In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei.

Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3'-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T(4)G(4)), forms a 16-nucleotide 3'-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been prop...

متن کامل

Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods and applications in fluorescence

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2016